Турбореактивный двигатель | Наука и техника

Нет комментариев



Схема работы ТРД:

1. Забор воздуха

2. Компрессор низкого давления

3. Компрессор высокого давления

4. Камера сгорания

5. Расширение рабочего тела в турбине и сопле

6. Горячая зона;

7. Турбина

8. Зона входа первичного воздуха в камеру сгорания

9. Холодная зона

10. Входное устройство


Турбореактивный двигатель

(

ТРД

, англоязычный термин —

turbojet engine

) —

Воздушно-реактивный двигатель

(ВРД), в котором сжатие

рабочего тела

на входе в камеру сгорания и высокое значение расхода воздуха через двигатель достигается за счёт совместного действия встречного потока воздуха и

компрессора

, размещённого в тракте ТРД сразу после входного устройства, перед камерой сгорания. Компрессор приводится в движение турбиной, смонтированной на одном валу с ним, и работающей на том же рабочем теле, нагретом в камере сгорания, из которого образуется реактивная струя. Во входном устройстве осуществляется рост статического давления воздуха за счёт торможения воздушного потока. В компрессоре осуществляется рост полного давления воздуха за счёт совершаемой компрессором механической работы. В камере сгорания производится подвод теплоты. Часть энергии рабочего тела отнимается турбиной. В реактивном сопле формируется реактивная струя.

Содержание


Ключевые характеристики

Ключевые характеристики ТРД следующие.

1. Создаваемая двигателем тяга.

2. Удельный расход топлива. (Масса топлива потребляемая за единицу времени для создания единицы тяги/мощности)

3. Расход воздуха. (Масса воздуха проходящего через каждое из сечений двигателя за единицу времени)

4. Степень повышения полного давления в компрессоре

5. Температура газа на выходе из камеры сгорания.

6. Масса и габариты.


Степень повышения полного давления в компрессоре

является одним из важнейших параметров ТРД, поскольку от него зависит эффективный

КПД

двигателя. Если у первых образцов ТРД (

Jumo-004

) этот показатель составлял 3, то у современных он достигает 40 (

General Electric GE90

). Для повышения газодинамической устойчивости компрессоров они выполняются

двухкаскадными

. Каждый из каскадов работает со своей скоростью вращения и приводится в движение своим каскадом турбины, которую также делают двухкаскадной. При этом вал 1-го каскада компрессора (низкого давления), вращаемого последним (самым низкооборотным) каскадом турбины, проходит внутри полого вала компрессора второго каскада (высокого давления). Каскады двигателя также именуют роторами низкого и высокого давления.



ТРД J85 производства компании General Electric. Между 8 ступенями компрессора и 2 ступенями турбины расположена кольцевая камера сгорания.

Камера сгорания большинства ТРД имеет кольцевую форму и вал турбина-компрессор проходит внутри кольца камеры. При поступлении в камеру сгорания воздух разделяется на 3 потока.


Первичный воздух

— поступает через фронтальные отверстия в камере сгорания, тормозится перед форсунками и принимает непосредственное участие в формировании топливно-воздушной смеси. Непосредственно участвует в сгорании топлива. Топливо-воздушная смесь в зоне сгорания топлива в ВРД по своему составу близка к

стехиометрической

.


Вторичный воздух

— поступает через боковые отверстия в средней части стенок камеры сгорания и служит для их охлаждения путём создания потока воздуха с гораздо более низкой температурой, чем в зоне горения.


Третичный воздух

— поступает через специальные воздушные каналы в выходной части стенок камеры сгорания и служит для выравнивания поля температур рабочего тела перед турбиной.

Из камеры сгорания нагретое рабочее тело поступает на турбину, расширяется, приводя её в движение и отдавая ей часть своей энергии, а после неё расширяется в сопле и истекает из него, создавая реактивную тягу.



ТРД

ВК-1

КБ Климова, с редко использующимися центробежным компрессором и трубчатой камерой сгорания. Использовался на самолётах

МиГ-15

,

МиГ-17

Благодаря компрессору ТРД (в отличие от ПВРД) может «трогать с места» и работать при низких скоростях полёта, что для двигателя

самолёта

является совершенно необходимым, при этом давление в тракте двигателя и расход воздуха обеспечиваются только за счёт компрессора.

При повышении скорости полёта давление в камере сгорания и расход рабочего тела растут за счёт роста напора встречного потока воздуха, который затормаживается во входном устройстве (так же, как в ПВРД) и поступает на вход низшего каскада компрессора под давлением более высоким, чем атмосферное, при этом повышается и тяга двигателя.

Диапазон скоростей, в котором ТРД эффективен, смещён в сторону меньших значений, по сравнению с ПВРД. Агрегат «турбина-компрессор», позволяющий создавать большой расход и высокую степень сжатия рабочего тела в области низких и средних скоростей полёта, является препятствием на пути повышения эффективности двигателя в зоне высоких скоростей:

  • Температура, которую может выдерживать турбина, ограничена, что накладывает ограничение на количество тепловой энергии, подводимой к рабочему телу в камере сгорания, а это ведёт к уменьшению работы, производимой им при расширении.

Повышение допустимой температуры рабочего тела на входе в турбину является одним из главных направлений совершенствования ТРД. Если для первых ТРД эта температура едва достигала 1000 К, то в современных двигателях она приближается к 2000 К. Это обеспечивается как за счёт применения особо жаропрочных материалов, из которых изготовляются лопатки и диски турбин, так и за счёт организации их охлаждения: воздух из средних ступеней компрессора (гораздо более холодный, чем продукты сгорания топлива) подается на турбину и проходит сквозь сложные каналы внутри турбинных лопаток.
  • Турбина поглощает часть энергии рабочего тела перед поступлением его в сопло.

В результате максимальная скорость истечения реактивной струи у ТРД меньше, чем у ПВРД, что в соответствии с формулой для реактивной тяги ВРД на расчетном режиме, когда давление на срезе сопла раввно давлению окружающей среды,


[1]

P=Gcdot(c - v)

, (1)

где
,P
— сила тяги,

,G
— секундный расход массы рабочего тела через двигатель,

,c
— скорость истечения реактивной струи (относительно двигателя),

,v
— скорость полёта,

ограничивает сверху диапазон скоростей, на которых ТРД эффективен, значениями M = 2,5 — 3 (M —

число Маха

). На этих и более высоких скоростях полёта торможение встречного потока воздуха создаёт степень повышения давления, измеряемую десятками единиц, такую же, или даже более высокую, чем у высоконапорных компрессоров, и ещё бо́льшее сжатие становится нежелательным, так как воздух при этом нагревается, а это ограничивает количество тепла, которое можно сообщить ему в камере сгорания. Таким образом, на высоких скоростях полёта (при M > 3) агрегат турбина-компрессор становится бесполезным, и даже контрпродуктивным, поскольку только создаёт дополнительное сопротивление в тракте двигателя, и в этих условиях более эффективными становятся прямоточные воздушно-реактивные двигатели.


Форсажная камера



Форсажная камера ТРД

General Electric J79

. Вид со стороны сопла. В торце находится

стабилизатор горения

с установленными на нём топливными форсунками, за которым видна турбина.




F-18 Hornet

на форсаже взлетает с палубы авианосца

Хотя в ТРД имеет место избыток кислорода в камере сгорания, этот резерв мощности не удаётся реализовать напрямую — увеличением расхода горючего в камере — из-за ограничения температуры рабочего тела, поступающего на турбину. Этот резерв используется в двигателях, оборудованных

форсажной камерой

, расположенной между турбиной и соплом. В режиме


форсажа


в этой камере сжигается дополнительное количество горючего, внутренняя энергия рабочего тела перед расширением в сопле повышается, в результате чего скорость его истечения возрастает, и тяга двигателя увеличивается, в некоторых случаях, более, чем в 1,5 раза, что используется боевыми самолётами при полетах на высоких скоростях. При форсаже значительно повышается расход топлива, ТРД с форсажной камерой практически не нашли применения в коммерческой авиации, за исключением самолётов

Ту-144

и

Конкорд

, полеты которых уже прекратились.



Скоростной разведчик

SR-71

с гибридными ТРД/ПВРД.


Гибридный ТРД / ПВРД



Турбопрямоточный двигатель J58

В

1960-х годах

в

США

был создан

гибридный

ТРД / ПВРД

Pratt & Whitney J58

, использовавшийся на стратегическом разведчике

SR-71 Blackbird

. До числа Маха М = 2,4 он работал как ТРД с форсажем, а на более высоких скоростях открывались каналы, по которым воздух из входного устройства поступал в форсажную камеру, минуя компрессор, камеру сгорания и турбину, подача топлива в форсажную камеру увеличивалась, и она начинала работать, как ПВРД. Такая схема работы позволяла расширить скоростной диапазон эффективной работы двигателя до М = 3,2. В то же время двигатель уступал по весовым характеристикам как ТРД, так и ПВРД, и широкого распространения этот опыт не получил.


Регулируемые сопла



Регулируемое сопло ТРДДФ F-100 самолёта F-16 створки максимально открыты



Регулируемое сопло ТРДФ АЛ-21 регулируемые створки максимально закрыты

ТРД, скорость истечения реактивной струи в которых может быть как дозвуковой, так и сверхзвуковой на различных режимах работы двигателей, оборудуются регулируемыми соплами. Эти сопла состоят из продольных элементов, называемых

створками

, подвижных относительно друг друга и приводимых в движение специальным приводом, позволяющим по команде пилота или автоматической системы управления двигателем изменять геометрию сопла. При этом изменяются размеры критического (самого узкого) и выходного сечений сопла, что позволяет оптимизировать работу двигателя при полётах на разных скоростях и режимах работы двигателя.

[1]


Область применения

ТРД наиболее активно развивались в качестве двигателей для всевозможных военных и коммерческих самолётов до 70-80-х годов XX века. В настоящее время ТРД потеряли значительную часть своей ниши в авиастроении, будучи вытесненными более экономичными двухконтурными ТРД (ТРДД).

  • Образцы летательных аппаратов, оборудованных ТРД
  • Штурмовик

    Су-25 УБ

    с двумя ТРД Р-95Ш.

  • Истребитель

    МиГ-21 бис

    с ТРД

    Р-25-300

  • Сверхзвуковой авиалайнер

    Конкорд

    с четырьмя ТРДФ Rolls-Royce/Snecma Olympus 593

  • Сверхзвуковой авиалайнер — летающая лаборатория

    Ту-144ЛЛ

    с четырьмя ТРДФ НК-321


Двухконтурный турбореактивный двигатель



Схема ТРДД с малой степенью двухконтурности.

1 — Вентилятор.

2 — Компрессор низкого давления.

3 — Компрессор высокого давления.

4 — Камера сгорания.

5 — Турбина высокого давления.

6 — Турбина низкого давления.

7 — Сопло.

8 — Вал ротора высокого давления.

9 — Вал ротора низкого давления.

На основе исследований, проводившихся с 1937,

А. М. Люлька

представил заявку на изобретение двухконтурного турбореактивного двигателя (авторское свидетельство вручили 22 апреля 1941 года). В основу двухконтурных ТРД (далее — ТРДД), в англоязычной литературе —


Turbofan


, положен принцип присоединения к ТРД дополнительной массы воздуха, проходящей через внешний контур двигателя, позволяющий получать двигатели с более высоким полетным КПД, по сравнению с обычными ТРД.

Пройдя через входное устройство, воздух попадает в компрессор низкого давления, именуемый вентилятором. После вентилятора воздух разделяется на 2 потока. Часть воздуха попадает во внешний контур и, минуя камеру сгорания, формирует реактивную струю в сопле. Другая часть воздуха проходит сквозь внутренний контур, полностью идентичный с ТРД, о котором говорилось выше, с той разницей, что последние ступени турбины в ТРДД являются приводом вентилятора. Таким образом, наиболее эффективные и мощные ТРДД делают трёхкаскадными и трёхвальными. К двум роторам внутреннего контура, называемого ещё газогенератором, добавляется ещё один, в котором вентилятор и последний каскад турбины соединены валом, расположенном внутри валов газогенератора.

Одним из важнейших параметров ТРДД, является степень двухконтурности, то есть отношение расхода воздуха через внешний контур к расходу воздуха через внутренний контур.

m=G_2/G_1

, (2)

где
m
— степень двухконтурности,

G_1
и
G_2
— расход воздуха через внутренний и внешний контуры соответственно.

Принцип присоединения массы можно истолковать следующим образом.

Согласно формуле полетного КПД ВРД

eta_n=frac{2} {1+frac{c}{v}}

, (3)

его повышение в ТРДД достигается за счёт уменьшения разницы между скоростью истечения рабочего тела из сопла
c
и скоростью полета
v
.

Уменьшение тяги, которое, согласно формуле (1), вызовет уменьшение этой разницы между скоростями, компенсируется за счёт увеличения расхода воздуха через двигатель. Увеличение расхода воздуха через двигатель достигается увеличением площади фронтального сечения входного устройства двигателя (увеличением диаметра входа в двигатель), что ведет к увеличению его лобового сопротивления и массы. Иными словами, чем выше степень двухконтурности — тем большего диаметра будет двигатель при прочих равных условиях.

Первым, предложившим концепцию ТРДД в отечественном авиадвигателестроении был

Люлька А. М.


Все ТРДД можно разбить на 2 группы: со смешением потоков за турбиной и без смешения.

В ТРДД со смешением потоков (ТРДДсм) потоки воздуха из внешнего и внутреннего контура попадают в единую камеру смешения. В камере смешения эти потоки смешиваются и покидают двигатель через единое сопло с единой температурой. ТРДДсм более эффективны, однако наличие камеры смешения приводит к увеличению габаритов и массы двигателя.

Например, длина ТРДД АИ-25, устанавливаемого на самолёте

Як-40

— 2140 мм, а ТРДДсм АИ-25ТЛ, устанавливаемого на самолёте

L-39

— 3358 мм.

ТРДД как и ТРД могут быть снабжены регулируемыми соплами и форсажными камерами. Как правило это ТРДДсм с малыми степенями двухконтурности для сверхзвуковых военных самолётов.


Управление вектором тяги (УВТ) / Отклонение вектора тяги (ОВТ)



Отклоняемые створки сопла с ОВТ.



ТРДД Rolls-Royce Pegasus поворотные сопла которого позволяют осуществлять вертикальные взлет и посадку. Устанавливается на самолёте Harrier.

Специальные поворотные сопла, на некоторых ТРДД, позволяют отклонять истекающий из сопла поток рабочего тела относительно оси двигателя. ОВТ приводит к дополнительным потерям тяги двигателя за счёт выполнения дополнительной работы по повороту потока и усложняют управление самолётом. Но эти недостатки полностью компенсируются значительным повышением маневренности и сокращением разбега самолёта при взлете и пробега при посадке, до вертикальных взлета и посадки включительно. ОВТ используется исключительно в военной авиации.


ТРДД с высокой степенью двухконтурности / Турбовентиляторный двигатель

Порою в популярной литературе ТРДД с высокой степенью двухконтурности (выше 2) называют турбовентиляторными. В англоязычной литературе этот двигатель называется turbofan с добавлением уточнения high bypass (высокая двухконтурность), сокращённо — hbp. ТРДД с высокой степенью двухконтурности выполняются, как правило, без камеры смешения. По причине большого входного диаметра таких двигателей их сопло внешнего контура достаточно часто делают укороченным с целью снижения массы двигателя.


Область применения

Можно сказать, что с 1960-х и по сей день в самолётном авиадвигателестроении — эра ТРДД. ТРДД различных типов являются наиболее распространённым классом ВРД, используемых на самолётах, от высокоскоростных истребителей-перехватчиков с ТРДДФсм с малой степенью до гигантских коммерческих и военно-транспортных самолётов с ТРДД с высокой степенью двухконтурности.




Як-44

с винтовентиляторными двигателями

Д-27


Винтовентиляторный двигатель

У винтовентиляторного двигателя поток холодного воздуха создаётся двумя соосными, вращающимися в противоположных направлениях, многолопастными

саблевидными

винтами, приводимыми в движение от турбины через редуктор. Степень двухконтурности таких двигателей достигает 90.

На сегодня известен лишь один серийный образец двигателя этого типа —

Д-27

(

ЗМКБ «Прогресс» им. академика А. Г. Ивченко, г. Запорожье, Украина.

), использовавшийся на самолёте

Як-44

с крейсерской скоростью полёта 670 км/ч, и на

Ан-70

с крейсерской скоростью 750 км/ч.


Турбовинтовой двигатель (ТВД)



Турбовинтовой двигатель. Привод винта от вала турбины осуществляется через редуктор



Устройство турбовинтового двигателя

Турбовинтовые или турбовальные двигатели (ТВД) относятся к ВРД

непрямой реакции

. Конструктивно ТВД схож с ТРД, в котором мощность, развиваемая последним каскадом турбины, передаётся на вал

воздушного винта

(обычно через редуктор). Этот двигатель не является, строго говоря, реактивным (реакция выхлопа турбины составляет не более 10 % его суммарной тяги), однако традиционно их относят к ВРД.

Турбовинтовые двигатели используются в транспортной и гражданской авиации при полётах с крейсерскими скоростями 400—800 км/ч.

Вариант этого двигателя с вертикальным выходным валом редуктора используется для привода винтов

вертолётов

, такие двигатели называют также

турбовальными

.


Примечания







  1. Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987



©



Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Похожие записи